2026/02103 16:27 s Visitor D 0
Visitor [[
00
Behavioral Pattern
00
00
000 O0oooo

ginterfaces»

Visitor Client

+visitElementA(in a - ConcreteElementA)
+visitElementB(in b : ConcreteElementB)

A

I

ConcreteVisitor

ginterface»
Element

+visitElementA(in a : CancreteElementA)
+visitElementB(in b : ConcreteElementB)

+accept(in v : Visitor)

AN

ConcreteElementA

+accept(in v : Visitor)

0O

visitor.cpp

#include <string>
#include <iostream>
#include <vector>

using namespace std;
class Wheel;

class Engine;
class Body;

ConcreteElementB

+accept(in v : Visitor)

OBG WiKi - http://www.obg.co.kr/doku/

http://www.obg.co.kr/doku/lib/exe/detail.php?id=programming%3Adesign_pattern%3Avisitor&media=programming:design_pattern:visitor.png
http://www.obg.co.kr/doku/doku.php?do=export_code&id=programming:design_pattern:visitor&codeblock=0

Ii?f(t):pdate: 2020/11/29 programming:design_pattern:visitor http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:visitor

class Car;

// interface to all car 'parts'
struct CarElementVisitor

virtual void visit(Wheel& wheel) const = 0;
virtual void visit(Engine& engine) const = 0;
virtual void visit(Body& body) const = 0;
virtual void visitCar(Car& car) const = 0;
virtual ~CarElementVisitor
// interface to one part
struct CarElement
virtual void accept(const CarElementVisitor& visitor) = 0;
virtual ~CarElement
// wheel element, there are four wheels with unique names
class Wheel : public CarElement
public:
explicit Wheel(const string& name
name (name
const string& getName const
name ;
void accept(const CarElementVisitor& visitor
visitor.visit(*this);
private:
string name_;
// engine

class Engine : public CarElement

public:
void accept(const CarElementVisitor& visitor

visitor.visit(*this);

http://www.obg.co.kr/doku/ Printed on 2026/02/03 16:27

2026/02/03 16:27 3/5 Visitor 0 O

// body
class Body : public CarElement

public:
void accept(const CarElementVisitor& visitor

visitor.visit(*this);
’

// car, all car elements(parts) together
class Car

public:
vector<CarElement*>& getElements

elements ;
Car

// assume that neither push back nor Wheel(const string&) may

throw
elements .push back(new Wheel("front left" ;
elements .push back(new Wheel("front right" ;
elements_.push back(new Wheel("back left" ;
elements .push back(new Wheel("back right" ;
elements .push back(new Body ;
elements .push back(new Engine ;
~Car
vector<CarElement*>::iterator it = elements .begin();
it != elements .end(); ++it
delete *it;
private:

vector<CarElement*> elements ;

.
’

// PrintVisitor and DoVisitor show by using a different implementation
the Car class is unchanged

// even though the algorithm is different in PrintVisitor and
DoVisitor.

class CarElementPrintVisitor : public CarElementVisitor

public:
void visit(Wheel& wheel) const

cout << "Visiting " << wheel.getName() << " wheel" << endl;

OBG WiKi - http://www.obg.co.kr/doku/

Ii?f(t)gpdate: 2020/11/29 programming:design_pattern:visitor http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:visitor

void visit(Engine& engine) const
cout << "Visiting engine" << endl;
void visit(Body& body) const
cout << "Visiting body" << endl;
void visitCar(Car& car) const
cout << endl << "Visiting car" << endl;
vector<CarElement*>& elems = car.getElements();
vector<CarElement*>::iterator it = elems.begin();

it !'= elems.end(); ++it

*it)->accept(*this); // this issues the callback i.e.
to this from the element

cout << "Visited car" << endl;
class CarElementDoVisitor : public CarElementVisitor
public:
// these are specific implementations added to the original object
without modifying the original struct
void visit(Wheel& wheel) const
cout << "Kicking my " << wheel.getName() << " wheel" << endl;
void visit(Engine& engine) const
cout << "Starting my engine" << endl;
void visit(Body& body) const
cout << "Moving my body" << endl;
void visitCar(Car& car) const
cout << endl << "Starting my car" << endl;
vector<CarElement*>& elems = car.getElements();
vector<CarElement*>::iterator it = elems.begin();

it !'= elems.end(); ++it

*it)->accept(*this); // this issues the callback i.e.
to this from the element

http://www.obg.co.kr/doku/ Printed on 2026/02/03 16:27

2026/02/03 16:27 5/5 Visitor 0 O

cout << "Stopped car" << endl;
int main
Car car;
CarElementPrintVisitor printVisitor;

CarElementDoVisitor doVisitor;

printVisitor.visitCar(car);
doVisitor.visitCar(car);

HEN

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Visitor

From:
http://www.obg.co.kr/doku/ - OBG WiKi

Permanent link: A
http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:visitor /¥

Last update: 2020/11/29 14:09

OBG WiKi - http://www.obg.co.kr/doku/

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Visitor
http://www.obg.co.kr/doku/
http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:visitor

	Visitor 패턴
	타입
	문제
	해결
	클래스 다이어그램
	예제
	참고

