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visitor.cpp

#include <string>
#include <iostream>
#include <vector>

using namespace std;
class Wheel;

class Engine;
class Body;

ConcreteElementB

+accept(in v : Visitor)
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class Car;

// interface to all car 'parts'
struct CarElementVisitor

virtual void visit(Wheel& wheel) const = 0;
virtual void visit(Engine& engine) const = 0;
virtual void visit(Body& body) const = 0;
virtual void visitCar(Car& car) const = 0;
virtual ~CarElementVisitor
// interface to one part
struct CarElement
virtual void accept(const CarElementVisitor& visitor) = 0;
virtual ~CarElement
// wheel element, there are four wheels with unique names
class Wheel : public CarElement
public:
explicit Wheel(const string& name
name (name
const string& getName const
name ;
void accept(const CarElementVisitor& visitor
visitor.visit(*this);
private:
string name_;
// engine

class Engine : public CarElement

public:
void accept(const CarElementVisitor& visitor

visitor.visit(*this);
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// body
class Body : public CarElement

public:
void accept(const CarElementVisitor& visitor

visitor.visit(*this);
’

// car, all car elements(parts) together
class Car

public:
vector<CarElement*>& getElements

elements ;
Car

// assume that neither push back nor Wheel(const string&) may

throw
elements .push back( new Wheel("front left" ;
elements .push back( new Wheel("front right" ;
elements_.push back( new Wheel("back left" ;
elements .push back( new Wheel("back right" ;
elements .push back( new Body ;
elements .push back( new Engine ;
~Car
vector<CarElement*>::iterator it = elements .begin();
it != elements .end(); ++it
delete *it;
private:

vector<CarElement*> elements ;

.
’

// PrintVisitor and DoVisitor show by using a different implementation
the Car class is unchanged

// even though the algorithm is different in PrintVisitor and
DoVisitor.

class CarElementPrintVisitor : public CarElementVisitor

public:
void visit(Wheel& wheel) const

cout << "Visiting " << wheel.getName() << " wheel" << endl;

OBG WiKi - http://www.obg.co.kr/doku/



Ii?f(t)gpdate: 2020/11/29 programming:design_pattern:visitor http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:visitor

void visit(Engine& engine) const
cout << "Visiting engine" << endl;
void visit(Body& body) const
cout << "Visiting body" << endl;
void visitCar(Car& car) const
cout << endl << "Visiting car" << endl;
vector<CarElement*>& elems = car.getElements();
vector<CarElement*>::iterator it = elems.begin();

it !'= elems.end(); ++it

*it)->accept(*this); // this issues the callback i.e.
to this from the element

cout << "Visited car" << endl;
class CarElementDoVisitor : public CarElementVisitor
public:
// these are specific implementations added to the original object
without modifying the original struct
void visit(Wheel& wheel) const
cout << "Kicking my " << wheel.getName() << " wheel" << endl;
void visit(Engine& engine) const
cout << "Starting my engine" << endl;
void visit(Body& body) const
cout << "Moving my body" << endl;
void visitCar(Car& car) const
cout << endl << "Starting my car" << endl;
vector<CarElement*>& elems = car.getElements();
vector<CarElement*>::iterator it = elems.begin();

it !'= elems.end(); ++it

*it)->accept(*this); // this issues the callback i.e.
to this from the element
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cout << "Stopped car" << endl;
int main
Car car;
CarElementPrintVisitor printVisitor;

CarElementDoVisitor doVisitor;

printVisitor.visitCar(car);
doVisitor.visitCar(car);
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