
2026/02/03 16:26 1/5 Observer 패턴

OBG WiKi - http://www.obg.co.kr/doku/

Observer 패턴

타입

Behavioral Pattern

문제

해결

클래스 다이어그램

예제

observer.cpp

#include <list>
#include <algorithm>
#include <iostream>
using namespace std;

// The Abstract Observer
class ObserverBoardInterface
{
public:
 virtual void update(float a,float b,float c) = 0;

http://www.obg.co.kr/doku/lib/exe/detail.php?id=programming%3Adesign_pattern%3Aobserver&media=programming:design_pattern:observer.png
http://www.obg.co.kr/doku/doku.php?do=export_code&id=programming:design_pattern:observer&codeblock=0

Last update:
2020/11/29 14:09 programming:design_pattern:observer http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:observer

http://www.obg.co.kr/doku/ Printed on 2026/02/03 16:26

};

// Abstract Interface for Displays
class DisplayBoardInterface
{
public:
 virtual void show() = 0;
};

// The Abstract Subject
class WeatherDataInterface
{
public:
 virtual void registerOb(ObserverBoardInterface* ob) = 0;
 virtual void removeOb(ObserverBoardInterface* ob) = 0;
 virtual void notifyOb() = 0;
};

// The Concrete Subject
class ParaWeatherData: public WeatherDataInterface
{
public:
 void SensorDataChange(float a,float b,float c)
 {
 m_humidity = a;
 m_temperature = b;
 m_pressure = c;
 notifyOb();
 }

 void registerOb(ObserverBoardInterface* ob)
 {
 m_obs.push_back(ob);
 }

 void removeOb(ObserverBoardInterface* ob)
 {
 m_obs.remove(ob);
 }
protected:
 void notifyOb()
 {
 list<ObserverBoardInterface*>::iterator pos = m_obs.begin();
 while (pos != m_obs.end())
 {
 ((ObserverBoardInterface*
)(*pos))->update(m_humidity,m_temperature,m_pressure);
 (dynamic_cast<DisplayBoardInterface*>(*pos))->show();
 ++pos;
 }

2026/02/03 16:26 3/5 Observer 패턴

OBG WiKi - http://www.obg.co.kr/doku/

 }

private:
 float m_humidity;
 float m_temperature;
 float m_pressure;
 list<ObserverBoardInterface* > m_obs;
};

// A Concrete Observer
class CurrentConditionBoard : public ObserverBoardInterface, public
DisplayBoardInterface
{
public:
 CurrentConditionBoard(ParaWeatherData& a):m_data(a)
 {
 m_data.registerOb(this);
 }
 void show()
 {
 cout<<"_____CurrentConditionBoard_____"<<endl;
 cout<<"humidity: "<<m_h<<endl;
 cout<<"temperature: "<<m_t<<endl;
 cout<<"pressure: "<<m_p<<endl;
 cout<<"_______________________________"<<endl;
 }

 void update(float h, float t, float p)
 {
 m_h = h;
 m_t = t;
 m_p = p;
 }

private:
 float m_h;
 float m_t;
 float m_p;
 ParaWeatherData& m_data;
};

// A Concrete Observer
class StatisticBoard : public ObserverBoardInterface, public
DisplayBoardInterface
{
public:
 StatisticBoard(ParaWeatherData&
a):m_maxt(-1000),m_mint(1000),m_avet(0),m_count(0),m_data(a)
 {
 m_data.registerOb(this);
 }

Last update:
2020/11/29 14:09 programming:design_pattern:observer http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:observer

http://www.obg.co.kr/doku/ Printed on 2026/02/03 16:26

 void show()
 {
 cout<<"________StatisticBoard_________"<<endl;
 cout<<"lowest temperature: "<<m_mint<<endl;
 cout<<"highest temperature: "<<m_maxt<<endl;
 cout<<"average temperature: "<<m_avet<<endl;
 cout<<"_______________________________"<<endl;
 }

 void update(float h, float t, float p)
 {
 ++m_count;
 if (t>m_maxt)
 {
 m_maxt = t;
 }
 if (t<m_mint)
 {
 m_mint = t;
 }
 m_avet = (m_avet * (m_count-1) + t)/m_count;
 }

private:
 float m_maxt;
 float m_mint;
 float m_avet;
 int m_count;
 ParaWeatherData& m_data;
};

int main(int argc, char *argv[])
{

 ParaWeatherData * wdata = new ParaWeatherData;
 CurrentConditionBoard* currentB = new
CurrentConditionBoard(*wdata);
 StatisticBoard* statisticB = new StatisticBoard(*wdata);

 wdata->SensorDataChange(10.2, 28.2, 1001);
 wdata->SensorDataChange(12, 30.12, 1003);
 wdata->SensorDataChange(10.2, 26, 806);
 wdata->SensorDataChange(10.3, 35.9, 900);

 wdata->removeOb(currentB);

 wdata->SensorDataChange(100, 40, 1900);

2026/02/03 16:26 5/5 Observer 패턴

OBG WiKi - http://www.obg.co.kr/doku/

 delete statisticB;
 delete currentB;
 delete wdata;

 return 0;
}

참고

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Observer

From:
http://www.obg.co.kr/doku/ - OBG WiKi

Permanent link:
http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:observer

Last update: 2020/11/29 14:09

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Observer
http://www.obg.co.kr/doku/
http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:observer

	Observer 패턴
	타입
	문제
	해결
	클래스 다이어그램
	예제
	참고

