2026/02/03 16:27 1/7 Flyweight O O

Flyweight [0 [

HEN

Structural Pattern
0
00 00D gogd oo oo g0 bbb b bgogo.

0O

0000 OO (intrinsicstate)d OO0OO0O0O OO OO (extrinsicstate)D OO0 OO0 OOO OOO
extrinsic state O OOOO OO.

oo gogogo

) «interface»
FlyweightFactory Flyweight
+getFlyweight(in key) +operation({in extrinsicState)

Client

+

ConcreteFlyweight

-intrinsicState
UnsharedConcreteFlyweight

+operation(in extrinsicState) Stat
-allState

’I+Dperatinn[in extrinsicState)

0O

flyweightl.cpp

#include <iostream>
#include <string>
#include <vector>

OBG WiKi - http://www.obg.co.kr/doku/

http://www.obg.co.kr/doku/lib/exe/detail.php?id=programming%3Adesign_pattern%3Aflyweight&media=programming:design_pattern:flyweight.png
http://www.obg.co.kr/doku/doku.php?do=export_code&id=programming:design_pattern:flyweight&codeblock=0

Last update:

2020/11/29 14:09 programming:design_pattern:flyweight http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:flyweight

#define NUMBER OF SAME TYPE CHARS 3;

/* Actual flyweight objects class (declaration) */
class FlyweightCharacter;

/*
FlyweightCharacterAbstractBuilder is a class holding the properties
which are shared by
many objects. So instead of keeping these properties in those objects
we keep them externally making
objects flyweight. See more details in the comments of main
function.
*/
class FlyweightCharacterAbstractBuilder
FlyweightCharacterAbstractBuilder
~FlyweightCharacterAbstractBuilder
public:
static std::vector<float> fontSizes; // lets imagine that sizes be
may of floating point type
static std::vector<std::string> fontNames; // font name may be of
variable length (lets take 6 bytes is average)

static void setFontsAndNames!();
static FlyweightCharacter createFlyweightCharacter(unsigned short
fontSizeIndex,
unsigned short fontNameIndex,
unsigned short positionInStream);

.
’

std::vector<float> FlyweightCharacterAbstractBuilder::fontSizes(3);
std::vector<std::string>
FlyweightCharacterAbstractBuilder: : fontNames(3);
void FlyweightCharacterAbstractBuilder: :setFontsAndNames
fontSizes|0] = 1.0;
fontSizes|1]| = 1.5;
fontSizes|[2]| = 2.0;

fontNames (0] = "first font";
fontNames[1] = "second font";
fontNames|[2| = "third font";

class FlyweightCharacter
unsigned short fontSizelIndex; // index instead of actual font size
unsigned short fontNamelndex; // index instead of font name

unsigned positionInStream;

public:

http://www.obg.co.kr/doku/ Printed on 2026/02/03 16:27

2026/02/03 16:27 3/7 Flyweight O O

FlyweightCharacter(unsigned short fontSizeIndex, unsigned short
fontNameIndex, unsigned short positionInStream):
fontSizeIndex(fontSizeIndex), fontNameIndex(fontNameIndex),
positionInStream(positionInStream
void print

std::cout << "Font Size: " <<
FlyweightCharacterAbstractBuilder: : fontSizes| fontSizeIndex
<< ", font Name: " <<

FlyweightCharacterAbstractBuilder: : fontNames| fontNameIndex

<< ", character stream position: << positionInStream <<
std::endl;
~FlyweightCharacter
FlyweightCharacter

FlyweightCharacterAbstractBuilder: :createFlyweightCharacter(unsigned
short fontSizeIndex, unsigned short fontNameIndex, unsigned short
positionInStream

FlyweightCharacter fc(fontSizeIndex, fontNamelIndex,
positionInStream);

fc;

int main(int argc, char** argv
std: :vector<FlyweightCharacter> chars;

FlyweightCharacterAbstractBuilder: :setFontsAndNames() ;
unsigned short limit = NUMBER OF SAME TYPE CHARS;

unsigned short i = 0; i < limit; i++
chars.push back(FlyweightCharacterAbstractBuilder: :createFlywei
ghtCharacter(0, 0, 1i));
chars.push back(FlyweightCharacterAbstractBuilder: :createFlywei
ghtCharacter(1l, 1, i + 1 * limit));
chars.push back(FlyweightCharacterAbstractBuilder: :createFlywei
ghtCharacter(2, 2, i + 2 * limit));

/*
Each char stores links to it's fontName and fontSize so what we
get 1is:

each object instead of allocating 6 bytes (convention above)
for string

and 4 bytes for float allocates 2 bytes for fontNameIndex and
fontSizeIndex.

That means for each char we save 6 + 4 - 2 - 2 = 6 bytes.
Now imagine we have NUMBER OF SAME TYPE CHARS = 1000 i.e. with

OBG WiKi - http://www.obg.co.kr/doku/

Iigsztol;ﬂi/aztge:m.og programming:design_pattern:flyweight http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:flyweight

our code

we will have 3 groups of chars whith 1000 chars in each group
which will save us

3 * 1000 * 6 - (3 *6 +3 *4) = 17970 saved bytes.

3 *6 +3 * 4 is a number of bytes allocated by
FlyweightCharacterAbstractBuilder.

So the idea of the pattern is to move properties shared by many
objects to some

external container. The objects in that case don't store the
data themselves they

store only links to the data which saves memory and make the
objects lighter.

The data size of properties stored externally may be
significant which will save REALLY

huge ammount of memory and will make each object super light in
comparisson to it's counterpart.
That's where the name of the pattern comes from: flyweight
(i.e. very light).
*/
for (unsigned short i = 0; i < chars.size(); i++) {
chars[i].print();

std::cin.get(); return 0;

flyweight2.cpp

#include <iostream>
#include <string.h>

using namespace std;

class Icon
{
public:
Icon(char *fileName)
{
strcpy(name, fileName);
it (!strcmp(fileName, "go"))

{
_width = 20;
_height = 20;
}
it (Istrcmp(fileName, "stop"))
{

http://www.obg.co.kr/doku/ Printed on 2026/02/03 16:27

http://www.obg.co.kr/doku/doku.php?do=export_code&id=programming:design_pattern:flyweight&codeblock=1

2026/02/03 16:27 5/7 Flyweight O O

_width = 40;
_height ;

Istrcmp(fileName, "select"

_width = 60;
_height = ;

Istrcmp(fileName, "undo"
_width = ;
_height = C
const char *getName
__name;

void draw(int x, int y

cout << " drawing " << name << ": upper left (" << x << ","
<< y <<
") - lower right (" << x + width << "," <<y + height <<
)" <<
endl;
private:
char name ;
int width;
int height;

.
’

class FlyweightFactory

public:
static Icon *getIcon(char *name
int 1 = 0; 1 < numIcons; i++
I'strcmp(name, icons|[i!->getName
_icons[il;
_icons| numIcons| = new Icon(name);

_icons| numIcons++];
static void reportTheIcons
cout << "Active Flyweights: “;
int 1 = 0; 1 < numIcons; i++
cout << icons|i]->getName() << " "“;

cout << endl;

private:

OBG WiKi - http://www.obg.co.kr/doku/

Last update:

2020/11/29 14:09 programming:design_pattern:flyweight http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:flyweight

enum

MAX ICONS =
static int _numIcons;
static Icon * icons[MAX ICONS]/;

int FlyweightFactory:: numIcons ;
Icon *FlyweightFactory:: icons||;

class DialogBox

public:

DialogBox(int x, int y, int incr): iconsOriginX(x),
_iconsOriginY(y),

_iconsXIncrement(incr

virtual void draw() = 0;
protected:

Icon * icons ;

int _iconsOriginX;

int _iconsOriginY;

int iconsXIncrement;

class FileSelection: public DialogBox

public:
FileSelection(Icon *first, Icon *second, Icon *third
DialogBox , ,
_icons = first;
_icons = second;
_icons = third;
void draw
cout << "drawing FileSelection:" << endl;
int 1 = 0; 1 < 3; i++
_icons|i|->draw(_iconsOriginX + (i * iconsXIncrement),
_iconsOriginY);

class CommitTransaction: public DialogBox

public:
CommitTransaction(Icon *first, Icon *second, Icon *third
DialogBox ,

http://www.obg.co.kr/doku/ Printed on 2026/02/03 16:27

2026/02/03 16:27 717 Flyweight O O

’

_icons = first;

_icons = second;

_icons = third;
void draw

cout << "drawing CommitTransaction:" << endl;
int i = 0; 1 < 3; i++
_icons|[i|->draw(_iconsOriginX + (1 * iconsXIncrement),
_iconsOriginY);

’
int main

DialogBox *dialogs ;
dialogs = new FileSelection(FlyweightFactory::getIcon("go"),
FlyweightFactory::getIcon("stop"),
FlyweightFactory::getIcon("select"));
dialogs = new
CommitTransaction(FlyweightFactory::getIcon("select"),
FlyweightFactory::getIcon("stop"),
FlyweightFactory::getIcon("undo"));

int i =0; 1 < 2; i++
dialogs/i|->draw();

FlyweightFactory: :reportTheIcons();

0

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Flyweight

From:
http://www.obg.co.kr/doku/ - OBG WiKi

Permanent link:
http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:flyweight

Last update: 2020/11/29 14:09

OBG WiKi - http://www.obg.co.kr/doku/

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Flyweight
http://www.obg.co.kr/doku/
http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:flyweight

	Flyweight 패턴
	타입
	문제
	해결
	클래스 다이어그램
	예제
	참고

