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public:
virtual void Run() = 0;
virtual void Stop() = 0;

class Laptop: public Computer

public:
virtual void Run(){mHibernating = false;
virtual void Stop(){mHibernating = true;
private:
bool mHibernating; // Whether or not the machine is hibernating

class Desktop: public Computer

public:
virtual void Run mOn = true;
virtual void Stop(){mOn = false;
private:
bool mOn; // Whether or not the machine has been turned on

’

class ComputerFactory

public:
static Computer *NewComputer(const std::string &description
description == "laptop"
new Laptop;
description == "desktop"
new Desktop;
NULL;

abstract factory2.cpp

#include <stdexcept>
#include <iostream>
#include <memory>

class Pizza
public:
virtual int getPrice() const = 0;

class HamAndMushroomPizza : public Pizza
public:
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virtual int getPrice() const

class DeluxePizza
public:
virtual int getPrice

public Pizza
const
class HawaiianPizza

public:
virtual int getPrice

public Pizza

const

class PizzaFactory

public:
enum PizzaType
HamMushroom,
Deluxe,
Hawaiian

static Pizza* createPizza(PizzaType pizzaType

pizzaType
HamMushroom:

new HamAndMushroomPizzal();
Deluxe:

new DeluxePizzal);
Hawaiian:

new HawaiianPizza

’

"invalid pizza type.";

/*
* Create all available pizzas and print their prices
*/
void pizza information( PizzaFactory::PizzaType pizzatype
Pizza* pizza
std::cout <<
pizza->getPrice() <<
delete pizza;

PizzaFactory::createPizza(pizzatype);
“Price of " << pizzatype << " is " <<
std::endl;

int main

pizza information
pizza information
pizza information

PizzaFactory: :HamMushroom
PizzaFactory: :Deluxe );
PizzaFactory::Hawaiian );

.
’
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