2026/02/03 16:32 1/4 Abstract Factory O O

Abstract Factory [0 [J

00 0000 0000 00 00 000 00000000 00000 o000 oooo oog.
Abstract Factory 000 O00O0OO FactoryOO QO OO OO O OO ProductD OO OODO OO.

0

Creational Pattern

0

gogogg ob,bbbbb oo oo bbb oo.ooo bbb oo, 000 bbb o0 oo
oo bbb oboooo oo oo.

0O

bbb obb obboodob oobob bbb obbo bboobobobo bboo boobbo bboo.

oo oodgon

Client
il

#interface»
AbstractFactory —
+createProductA() «interface»
+createProductB() AbstractProduct

7\ /\

ConcreteFactory

+createProductA()
+createProductB()

ConcreteProduct

N

abstract_factoryl.cpp

class Computer

OBG WiKi - http://www.obg.co.kr/doku/

http://www.obg.co.kr/doku/lib/exe/detail.php?id=programming%3Adesign_pattern%3Aabstract_factory&media=programming:design_pattern:abstract_factory.png
http://www.obg.co.kr/doku/doku.php?do=export_code&id=programming:design_pattern:abstract_factory&codeblock=0

Last

;ggg;i/zg programming:design_pattern:abstract_factory http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:abstract_factory

14:09

public:
virtual void Run() = 0;
virtual void Stop() = 0;

class Laptop: public Computer

public:
virtual void Run(){mHibernating = false;
virtual void Stop(){mHibernating = true;
private:
bool mHibernating; // Whether or not the machine is hibernating

class Desktop: public Computer

public:
virtual void Run mOn = true;
virtual void Stop(){mOn = false;
private:
bool mOn; // Whether or not the machine has been turned on

’

class ComputerFactory

public:
static Computer *NewComputer(const std::string &description
description == "laptop"
new Laptop;
description == "desktop"
new Desktop;
NULL;

abstract factory2.cpp

#include <stdexcept>
#include <iostream>
#include <memory>

class Pizza
public:
virtual int getPrice() const = 0;

class HamAndMushroomPizza : public Pizza
public:

http://www.obg.co.kr/doku/ Printed on 2026/02/03 16:32

http://www.obg.co.kr/doku/doku.php?do=export_code&id=programming:design_pattern:abstract_factory&codeblock=1

2026/02/03 16:32 3/4 Abstract Factory O O

virtual int getPrice() const

class DeluxePizza
public:
virtual int getPrice

public Pizza
const
class HawaiianPizza

public:
virtual int getPrice

public Pizza

const

class PizzaFactory

public:
enum PizzaType
HamMushroom,
Deluxe,
Hawaiian

static Pizza* createPizza(PizzaType pizzaType

pizzaType
HamMushroom:

new HamAndMushroomPizzal();
Deluxe:

new DeluxePizzal);
Hawaiian:

new HawaiianPizza

’

"invalid pizza type.";

/*
* Create all available pizzas and print their prices
*/
void pizza information(PizzaFactory::PizzaType pizzatype
Pizza* pizza
std::cout <<
pizza->getPrice() <<
delete pizza;

PizzaFactory::createPizza(pizzatype);
“Price of " << pizzatype << " is " <<
std::endl;

int main

pizza information
pizza information
pizza information

PizzaFactory: :HamMushroom
PizzaFactory: :Deluxe);
PizzaFactory::Hawaiian);

.
’

OBG WiKi - http://www.obg.co.kr/doku/

Last
update:
2020/11/2
14:09

9 programming:design_pattern:abstract_factory http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:abstract_factory

0O

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Abstract Factory

From:
http://www.obg.co.kr/doku/ - OBG WiKi

Permanent link: , =
http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:abstract_factory d

Last update: 2020/11/29 14:09

http://www.obg.co.kr/doku/ Printed on 2026/02/03 16:32

http://en.wikibooks.org/wiki/C%2B%2B_Programming/Code/Design_Patterns#Abstract_Factory
http://www.obg.co.kr/doku/
http://www.obg.co.kr/doku/doku.php?id=programming:design_pattern:abstract_factory

	Abstract Factory 패턴
	타입
	문제
	해결
	클래스 다이어그램
	예제
	참고

